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ITERATIVE SOLUTION OF THE INCREMENTAL PROBLEM
FOR ELASTIC-PLASTIC STRUCTURES WITH

ASSOCIATED FLOW LAWS

OSVALDO DE DoNATO

Milan Polytechnic Institute, Italy

Abstract-The classical approach to the incremental problem of elastic-plastic structures with elementary
work-hardening constituents expressed in terms of an integral equation is converted into a new one free from
conditions for the unknown incremental plastic strain.

The paper applies some iterative methods of the integral equation theory and discusses the conditions of
uniform convergence of the functions sequence that approximates to the incremental distribution of stresses.

Lastly, it is shown that the iterative methods considered can be extended to the case of structures with work
softening constituents; a condition that usually accompanies the study of such systems coincides with a con
vergence condition of one of the iterative methods discussed.

1. INTRODUCTION

WORKING from the incremental theory of elastoplasticity, several authors have recently
attempted to devise general methods for the study of elastic-plastic structures that would
be simpler to apply than the classic variational principles of plasticity theory. Among these
are the contributions [1] [2], who formulated a new general principle for perfectly plastic
or work-hardening materials.

Parallel studies on the general stability of equilibrium supply sufficient uniqueness and
stability conditions of the incremental solution for trusses [3] and for a continuum [4]
with unstable constituents (elementary or finite); further [5] they show how the variational
principles can be extended to systems with work-softening constituents.

Within this framework the writer recently tackled the problem of stability [6] in terms
of an integral equation that had proved rewarding for this purpose. Reference was made,
albeit indirectly, to the incremental elastic-plastic problem, though no attempt was made
to solve it because of the analytical difficulties involved.

This paper takes up the problem where it was left in [6] and aims to show how, if some
restrictive hypotheses are imposed, these difficulties can be overcome by using some well
known properties of integral equation theory in order to generate an iterative procedure
for calculating elastic-plastic systems.

The incremental flow laws assumed for the generalized stress and strain comp'onents
Qi(X) and qj(x) of a given three-dimensional continuum* are of the associated type and
concavity in yield surface «1l(Qi) = 0 is not excluded. The incremental plastic strain tjf(x)
is defined as the difference between the actual cjlx) and the qf(x) that would apply in the
case of elastic behavior.

... Hereafter x will denote the coordinates x, y, z of a given point in the three-dimensional body. As usual, it is
assumed that the properties of the materials are time-independent and t stands for a given increasing function
of time that represents the succession of the states of the system. The symbol denotes the differential with
respect to t.

81



82 OSVALDO DE DoNATO

The constitutive incremental laws are summed up in the usual form:

. a(x) a<l> a<l>. a<l>
qf(x) = J.1(x) aQi (x). aQ~(x). Qix) = A(x). aQi (x)

where in the case of work-hardening materials (J.1(x) > 0)

(1 )

(2)

. . a<l>
a(x) = 0 for <l> < 0 orfor <l> = 0 and <l> = Qj aQi ::;; 0

a(x) = 1 for <l> 0 and <i> > O.

In other words, for the time being perfectly plastic or work-softening materials such as
were considered in the broader class of behaviors dealt with in [6J are excluded. This does
not mean that the reasoning outlined here cannot be applied to the latter types of behavior
in certain conditions, which will be detailed later.

On the broader assumptions considered in [6J, and hence also on the more restricted
ones indicated here, the problem of incremental response due to an increment Flx) of the
loads starting from a known configuration with extent Vp of the plastic region is reduced
to the solution of the integral equation in A(x):

'() f a(x) 'l( ')d' a(x)jIi. x - -)' Z(x, x). II. X V = -() (x)
v p Jt(x J.1 x

on the additional condition, given the essentially positive character of A(x):

A(x) ~ 0

as well as in the presence of the alternative

o
/

a(x) =
"'

I

(3)

(4)

(5)

for every x in ~ according to whether or not elastic unloading (a(x) = 0) occurs.
In (3) the function j(x) represents, to within the factor a<l>/aQi' the increment Q{(x)

of the stress distribution due to the increment of the loads Fi(x) assuming that the materials
behave elastically; the second term of the first member represents the contribution to the
stress distribution made by the effective plastic strains qf(x) seen as dislocations to which
the body is subject if the material behave elastically, since Z(x, x'), to within the factor
(a<l>/aQi)(X) . (a<l>/aQj)(x/), is the influence function ZjJ{x, x') of a unit dislocation qj(x') in x'
on the ith elastic stress component at x.

Starting with this approach, it is shown that the problem can be transformed into a
new one (in the classic form, i.e. before conditions for the unknown function A(x)) for which
the known iterative criteria of solution apply.

In particular for the continuous one-dimensional case without interactions, by means
of iteration we find for a particular case the solution of the incremental problem.

The numeric solution thus obtained is then compared with the solution that with
reference to the first step of the loading program can be obtained by means of the analogic
method proposed in [7].
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Lastly, the application of the method to the case of work-softening is dIscussed and
the possibility of extending it to the case of perfectly plastic materials is suggested.

2. EVOLUTION OF THE PLASTIC REGION

Assumptions (0 and (2) regarding the constitutive laws presuppose load increments
that are smaIl enough not to bring points that are initially in the elastic range into the
plastic range. As a consequence of the above assumptions the integration domain of (3)
coincides with the initial plastic region Vp • In other words, during a step [1] in the loading
program it is assumed that the plastic region either remains constant (which would hap
pen for a:(x) = 1 for every x in Vp) or decreases (by Vp-e if Vp - e represents the region
of Vp in which a:(x) 0), but anyway can never increase.

Similar behavior may occur in the discrete case [2] (that is for trusses or continua
divided into finite parts, etc.) where the variations in region Vp are discontinuous, Vp

remaining constant until, after a succession of steps in the loading program, any (finite)
element reaches the yield limit.

This type of behavior does not usually occur in a continuum since the variation in Vp

is generally* a continuous function of the loads. The previous assumption regarding the
extent of Vp may still be made, however, as the variation ~_ p - Vp- e of Vp (Ve - p is the region
in which a:(x) = 1) cannot be other than infinitesimal (at least of the 1st order with 2(x»
and so in (3) can supply contributions of an order above the 1st that can be ignored in a
first-order approach.

Notwithstanding this, a few difficulties may still arise. In the particular case of an
initial situation with a finite number of points at the yield 'limit (and hence Vp = 0), (3)
supplies for A(X) the expression

2(x) = :~=;. f(x) (6)

obviously wrong for a general load increment and anyway unsuitable for determining the
incipient formation of plastic region v,,- p; it is thus impossible to describe the change of
the plastic strains in the successive steps since the extent of the integration domain Vp of
(3) always remains zero.

All this is the result of ignoring in (3) the term

r a:(x) Z( ')'( ')dV'J.. (x) . x, x A. x
V~_p J.l

because it is of the second order, although it alone is responsible for the increment of ~.
The reference to the last case suggests that the change of Vp cannot be fully identified

unless we take an approach including in (3) infinitesimal contributions of a higher order
than the 1st; by this means the increments of Vp will occur within each individual step and
not only in the succession of steps in the loading program, as is the case with the 1st order
approach.

All this constitutes a closer approximation to the real behavior of structures and
makes necessary a more precise definition of the constitutive incremental law of the
material which, as stated in the terms indicated in (1) and (2), does not cover the case of
increments in Vp within a step starting from situations in the elastic range.

* The case of finite variations in Vp for an assigned infinitesimal load increment is explicitly excluded.
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Writing equation (1) in the form

0<1> .
qf(x) = OQ; (X). g[<I>(X)J (7)

where QiO(X) denotes the initial stress distribution, we define function g[<i>(x)] as follows:

{

if<b(X) ~ 0

for 4l[Qw(x)] 2:: 0

if <i>(x) > 0

g[<i>(x)] = 0

g[<i>(x)J = <b(x)
Jl(x)

(8)

(9)

if <i>(x) ~ 0

or <b > 0 and 4l[QiO(X)+Qi(X)] < 0
for <I>[QiO(X)] < 0

if <i>(x) > 0

and <I>[Qw(x) +Qj(x)] > 0

g[<i>(x)] = 0 (10)

. <i>(x)
g[4l(x)] = ,u(x)

+ ![QIO(X), ... QiO(X), ...]
(11)

where ![QIO(X), ... QiO(X), ...J is a known function (depending upon the type of structure
and material) ofpoint A in the stress space representing the initial stress distribution at x and
depending on the evolution, within the step, of stresses QiO(X) at the final value QiO(X) +Qj(x)
(Fig. 1, where Qand qare the incremental stress and strain vectors ofcomponents Q1, ... Qi'
ql ... qj).

FIG.!.

¢(Q,)-O

FIG. 2:

(11) thus allows for the transition of points in the elastic range to the plastic range during
the step. Increments Fi(x) are, however, assumed to be such that during the interval of time
dt relating to a given step in the loading program the forces F;(x) and the generalized
stress and strain components Qj and qi vary proportionally; it is always possible to ensure
this by acting on the amplitude of the load increments assigned.

On the basis of these new assumptions, with equation (3) written in the form

Qj(x)- f . . Zj){x,x')·qf(x')dV' = Q{(x)
Vp-Vp_e+Vtr_p

(12)
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(13)

where Vp-e and v,,-p are the regions in transition from the elastic to the plastic range and
vice versa, by means of (8), (9), (10) and (11) it is possible to pass from the incremental prob
lem set in the terms of(3), (4) and (5) to the problem expressed as a single nonlinear equation:

<b(x)- Iv Z(x,x'). g[<b(x')) dV' = f(x)

in the unknown function <i>(x) without limitation of sign.
As to the domain of integration, it may be formally extended to the whole volume V

of the continuum instead of to the region Jt;, - t;,_e + v" _p since the integral will supply a
non zero contribution only in the cases (9) and (11), which form part of the unknown
region Vp- Vp-e+ v,,-p'

3. SOLUTION OF THE INCREMENTAL ELASTIC PLASTIC PROBLEM

The transformation of the problem set in terms of (3), (4) and (5) into the form (13)
(that is free from conditions for the unknown function <b(x» proves to be especially useful
in solving the problem since with h(x') representing a function such that*

and with

equation (13) becomes

f(x) = Iv Z(x, x'). h(x') d V'

m[x', <i>(x')] = g[<b(x')] +h(x')

<b(x)- Iv Z(x, x'). m[x', <i>(x'») dV' = 0

(14)

(15)

(16)

which falls within the type of nonlinear integral equation in the Hammerstein's standard
form. The theory of integral equations supplies some weak sufficient conditions of unique
ness of solution involving the kernel - Z(x, x')/J[J,l(x)] . J[J,l(x')] and the function m(x, u).
Precisely the kernel must satisfy the inequality:

(17)

* It is always possible to find a function h(x') such that (14) holds good whatever f(x) may be. Indeed, because
of the presence of influence function Z(x, x'), h(x') acquires the meaning of distribution of dislocations imposed
on the elastic body equal to the elastic strains due to the loads Fi(x). In other words, referring back to the
splitting of the stress Qi(X) into the sum of elastic stresses Q{(x) and the self-stresses Qi(x), we may write it as
follows:

041 041 ffIx) "" oQ/x). Q{(x) "" oQ/x). y ziix, x') . 4f(x')d V'

and hence

[
041 J-1h(x') = 4f(x'). -(x')
oQj
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with N constant, which is certainly verified;* the function m(x, u) must satisfy the conditions
of the first Hammerstein's theorem of uniqueness for equations with semidefinite positive
kernel. In the present case these conditions are fulfilled if the work-hardening coefficient
p,(x) is positive.

This latter requirement is covered by the hypothesis of first section; thus the uniqueness
of solution is ensured.

With regard to the solution of(16), several ofthe numerous iterative methods frequently
employed in the study of nonlinear integral equations may be used. They are related
formally to the known methods of approximate solution of algebraic and transcendental
equations, i.e. to the simple iteration or the Raphson~Newtonmethod.

By using these methods and writing (16) in the form

$(x) = F[$(x)] = $(x)- G[$(x)] (16')

the two fundamental approximate methods mentioned above lead respectively to the
following iterative relations

$n+t(x) = F[$n(x)]

. () . ( $n-F[~n(x)] = A.. ( )_ G[~n(X)]
<I>n+ 1 X = <I>n x) 1-F'[<I>n(x)] "'n x G'[<I>n(x)]

with

and thence to the sequence

(18)

(19)

(20)

Many sufficient conditions for the uniform convergence of the sequence (20) are known;
however, these are very restrictive conditions, which kernel Z(x, x')/v![p,(x)]. v![p,(x')] or its
eigenvalues r i must satisfy. With reference to (18), from the fundamental theorem of func
tional analysis of iterative processes [9] [12] we can easily deduce the conditions

I
Z(x, x') 1 1

v![p,(x)] . v![p,(x')] <

Wd> 1

(21)

(22)

that are singly sufficient for convergence. They, however, express over-restrictive condi
tions that do not generally occur since they set limitations to the values of the work
hardening coefficient /1(x), which is assumed to be positive arbitrary. This explains why we
cannot for the moment make systematic use of the iteration method (18), which has the
advantage of being the simpler of the two methods considered, even though convergence
is not always rapid.

* Indeed, it may always be said that: JfvZ(x, x') dV dV' :$; M(.) with M constant when, to within the sign,
the first member is interpreted as strain energy due to unit dislocations imposed on the body supposed to have
elastic behavior. Lastly, (.) leads to (17).
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By the Raphson-Newton method, on the other hand, (19) may be written in the follow
ing way

.. I . . 2 G"[<i>(x)]
<1>(x)-<D,,+ I(X) ~ "2[<1>(x)-<D,,(x)] . G'[<i>(x)] (23)

from the recurrent application of which it follows that

<i>(X)-<i>"+l(X) ~ {al[<i>(x)-<i>1(X)]} 21 n+\)/al (24)

which guarantees uniform convergence of sequence (20) on the exact solution for any
value of al (that is for any kernel Z(x, x')/J[Jt(x)]. J[/t(x')] whatsoever), provided that
function <i>1(X) of first approximation be sufficiently close to the exact solution <i>(x) so
that a1[<i>(x)-<i>1(X)] is less than unity.

This only condition is generally rather restrictive since a function <i>l(X) that approxi
mates to <i>(x) is most unlikely to be known. In this case the assumptions concerning the
size of the increments Fi(x) and the evolution of elastic-plastic region allow us to conceive
the known incremental elastic solution to the problem complies with the required condi
tions of approximation of the solution <i>(x). Should this not be so for assigned values of
Fi(x), there would still be no difficulty in satisfying the above condition, as it would always
be possible, by checking the distribution of the additional loads, to ensure that the incre
mental elastic solution was exceedingly close to the effective elastic-plastic solution.

And so if we once again express (16) in the form (13) and apply the two iterative methods
considered, (18) and (19) supply the recurrent relations:

4>"+ 1(x) = LZ(x, x')g[<i>,,(x')] d V' +f(x) (25)

<i>,,+ leX) = -(B-l)<i>,,(X)+B{L Z(x, x'). g[<i>,,(x')] dV' +f(X)} (25')

where B = 1/(1-A) and

A = [a~Lp-vP-.+v'_p Z(x, x')g[<i>] d vJci>~ci>"
B cannot be evaluated a priori because the extent of Vp - Vp-e+ Ve- p depends on the
unknown <i>(x); it can therefore be calculated by approximation from the expressions of
B" obtained by substituting for Vp- ~-e+ v,,-p the region V~ that is defined by each of
the functions <i>,,(x) approximating to the exact solution.

In the particular case of Vp = 0 in a second order approach (or in the case of Vp #- 0 for a
first order approach) we would point out that the terms containing A may be rigorously
disregarded and so (25') may be converted into the simpler recurrent relation (25).

Thus the earlier remarks regarding the poor changes of using (25) no longer stand;
and the same applies to conditions (21) and (22), now rendered superfluous by the proven
convergence of the method of Raphson-Newton, from which the iteration method can
now be derived.

Lastly, we would point out that for <i>1(X) == 0 the convergence of the sequence (20)
is still assured by the fact that from (25') we obtain:

. at/> n
<Dix) = f(x) = oQ/x). \t{(x)
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which coincides with the incremental elastic solution. Hence the sequence (20) is bound
to converge on the exact solution <i>(x) of the problem.

4. ONE-DIMENSIONAL CASE

It was shown in [6] that a typical feature of this particular case is the degeneracy of
kernel Z(x, x'), i.e. the separability of the dependence of Z(x, x') on the variables x and x'
in the form of the sum of products of functions of x and x' only according to the relation:

Z(x, x') = f. Hk(x). Gk(x') (26)
k= 1

where r is finite and equal to the number of redundant reactions of the system. Referring
back to (25') we may write:

<i>n+l(X) = -(B-1)<i>n(X)+B(JI Hk(x)LGk(X')g[<i>n(X')}dV'+!(X») (27)

and so the iterative method may be summed up in the recurrent equation:

$n+ l(X) = -(B-l)<i>n(X)+BLt Hk(x). Akn + !(X») (28)

assuming that:

Akn = LGk(x')g[<i>n(x')] dV'. (29)

The method is thus reduced to the calculation of constants A kn only.
Because of the physical meaning attached in [6] to Hk(x) i.e. the influence function of

the kth redundant reaction on the ith generalized stress component at x, coefficients
Akn take on the meaning of redundant reactions (of nth approximation). It is thus shown
that the iterative method arrives at the solution <i>(x) by successive approximations of the
self-stress distribution to be added as a "corrective" to the stress distribution f(x) due
to Fj(x) in a body supposed to have an elastic behavior.

All that remains now is to state the incremental law governing the generalized stress
and strain components g[<i>(x»). Assuming beams or systems of straight beams subjected
to transverse loads, as usual in the case of bent beams in the elastic range, strains due to
the shear forces are ignored and it is assumed that there is no interaction between the
shear forces and bending moments.

The generalized stress and strain components are thus reduced to the bending moment
Q(x) and the curvature q(x).

For the elementary constituent (beam element dx) it is assumed that the elastic-plastic
law with linear work-hardening holds and Q, EJ, ji(x) denote respectively the bending
moment at the elastic limit, the bending stiffness in the elastic range and the bending stiff
ness in the plastic range.*

Thus, on the assumption that the material behaves symmetrically under tensile and
compressive stresses, expression (1) becomes:

IQ(x)l- Q(x) = 0 (30)

• The relation between these coefficients and the work-hardening coefficient It(x} is:

1 (1 1)
It(x} = ji(x} - EJ
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and the constitutive law (8), (9), (10), (11) with Qo(x) denoting the stress distribution of
any given section x in the initial situation* will become:

(31a)

(31b)

qP(x) +Hfi- ;J) {Q(x)+IQ(x)1}

1
° ror Q(x) ,; °

= + (~- ;J)Q(X) for Q(x) > 0

if Qo(x) < Q(x) qP(x) = +H~- ;J)

x {Q(x)+ Qo(x)-Q(x)+IQ(x)+ Qo(x)-Q(x)1} =

OforQ(x) ~ 0 and for Q(x) > 0

but Q(x) + Qo(x)-Q(x) ~ 0 (32a)

(33a)

(33b)

(32b)

if Qo(x) > - Q(x)

= + (~- ;J) [Q(x) + Qo(x)-Q(x)] for Q(x) > 0

but Q(x) +Qo(x)-Q(x) > 0

ifQo(x) < -Q(x) qP(x) = +Hfi- ;){Q(X)-IQ(X)I}=

-1°{I 1) forQ(x) ~ 0
- -p-EJ Q(x) for Q(x) < 0

qP(x) = +~(fi- ;J)
x{Q(x)+Qo(x)+Q(x)-IQ(x)+Qo(x)+Q(x)1} =

for Qo(x) < 0

o for Q(x) ~ 0 and for Q(x) < 0

but Q(x) + Qo(x)+Q(x) ~ 0 (34a)

+(~- ;A[Q(X)+Qo(X)+Q(X)] forQ(x) < 0

and Q(x) + Qo(x) + Q(x) < O. (34b)

*The sagging bending moment Q(x) is assumed to be positive. So:

oll>
oQ(x) = ±l

according to whether Q(x) is positive or negative respectively. With regard to the work-hardening coefficient
/lex) we shall assume hereafter that it is constant as it frequently occurs in straight beams. No difficulty would
arise if we were to assume both /l and EJ as x dependent.
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(35)

It follows from the flow law stated above that the incremental plastic strain is related
to the stress increment Q(x) by only one equation:

qP(x) = +~(1- ~J) {Q(X)+~[QO(X)-,~:i:;,Q(X) ,~:i:;,·IQo(X)-,~:i:;" Q(X)IJ
Qo(x) /. I [ Qo(x) - Qo(x) I Qo(x) - IJ I}

+IQo(x)!' IQ(x) +2 Qo(X)~ IQo(x)!' Q(x)-,Qo(X)[ Qo(x)-,Qo(x)I' Q(x)

= qP[x, Q(x)]

and so by (25'), since [(o<1>/oQ)(xW = 1 yields the recurrent relation

Qn+l(X) = (B-1)Qn(X)+B( Iv Z(X,X')qP[X1,Qn(X')]dX'+QJ(X)). (36)

In our assumptions, (35) sums up the incremental flow law, whilst (31), (32), (33) and (34)
express it in various particular cases. They specify the usual elastic-work-hardening
behavior and moreover the dependence of the plastic strains upon the initial stress distribu
tion Qo(x) according to the new hypotheses on the evolution of plastic region Vp •

5. EXAMPLE OF APPLICATION

We shall now take one ofthe cases discussed in section 2 and determine the incremental
solution when the plastic region Vp in the initial situation is zero and when to follow the
evolution of Vp , the increment within each step must be evaluated.

Let us consider for this purpose a straight beam of constant cross-section and length I
clamped at one end and supported at the other, Acting on it is a uniformly distributed
load of constant intensity;

jj = 8Q/12 (37)

Starting from this situation (which we shall call hereafter the initial situation),
characterized by a stress distribution in the elastic range for all sections of beam except
the clamped section, we aim to determine the response of the system in terms of the
corresponding increment Q(x) and q(x) of the stress and strain distribution due to an in
finitesimal increment p(x) cost of the loads.

The example has been chosen in order that it may be studied also by a known analogic
method [7] so that we may obtain useful reference values for the results obtained by the
iterative method. It should be noted that the analogic method is of limited applicability
in this type of problem in that it assumes a holonomic stress-strain law, which excludes
elastic unloading,

A limitation of this kind is obviously inadmissible when for Vp > 0 the elastic un
loading is not small and precludes its general application. In the present case with an
initial limit situation and confining our attention to the first step in the loading program,
we can exclude the presence of unloading ,* The assumptions underlying the iterative

* This is because in the time interval dt relating to a given step in the loading program it is assumed that
forces F, and components Qi' qi will vary proportional1y. In the first step this assumption excludes the elastic
unloading because, as Vp == 0, this would occur as a result of previous plasticization during the step and with a
change in the ratios of Qi to qi' In the second and subsequent loading steps, however, unloading may occur
right from the beginning of the step starting from existing plastic stress distributions (Vp '" 0) without affecting
the above ratio in the course of the step. In this case the unloading that has occurred must be taken into con
sideration and the analogic method cannot be applied.
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(38)

method thus specialize and fall within the more restrictive limitation ofthe analogic method,
which now can be used directly; thus for the first loading step only, the two approaches
(iterative and analogic) lead to the same results.

By the analogic method, having assumed the origin of the axis x at the simply supported
end of the beam, and p(x) = p+P= cost = p and denoting as

r. pix px2 QiX
Q(x) = Qo(x)+\t(x) = 2-2--1-

the equilibrated distribution of the bending moments where Qi = Q+Q(/) is the unknown
redundant reaction at the clamped end, solution Q(x) is obtained, as is known [7], from
the equation:

1 itt (PiX px
2

QiX) 1 fl (PIX px
2

QiX -) Q fl-- ------ xdx - -----+Q xdx+- xdx = 0
EJ 0 2 2 I ii tt 2 2 I EJ el

(39)

which expresses the compatibility condition as a condition of equilibrium of the auxiliary
beam, £I being the extent of the elastic region up to the cross-section in which

Q(e/) = -Q. (40)

In virtue of(40) we obtain from (39) a fifth degree algebraic equation in e whose solution
physically feasible esupplies via (38) the incremental moment at the clamped end

and so lastly the unknown incremental distribution, assuming y = PiP

Q(x) = [4-Q0J .pix _px
2

yQ 8 2

In particular, assuming:

EJ = 4
ii
y = 2.10- 2

it follows that

Q(/) = 0·01965871441Q.

(41 )

(42)

(43)

(44)

(45)

At the stage of numeric application of the iterative procedure we note first of all that as

2

Qf(x) = iPlx-4
(46)

(47)
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(48)

equation (13) may be written in the form:

f.
tl 1(1 1)Q(x) = 0 z(x,x')2 ~-EJ {Q(x')+ Qo(x')-Q+IQ(x')+ Qo(x')-QI} dx'

+ I:, z(X'X')~(~- ~J){Q(X')+Qo(X')+Q-IQ(X')+Qo(X')+QI} dx' +Qf(x).

Whatever the unknown distribution Q(x) may be, given the stress distribution Qo(.x)
of the cross-sections for 0 < x < if at a finite "distance" from the yield limit (the minimum
occurs at x = 31/8), the first integral in the second member of (48) is bound to yield a
zero contribution, since it falls within the case (32a); the same applies to the second
integral in relation to the case (34a), except that for the region Ve - p at the end of the step
where, because of transitions of cross-sections from the elastic range to the plastic range,
in virtue of (34b) there must be a non zero contribution. Equation (48) thus becomes:

Q(x) = 1. z(x, X')(~- ~J) [Q(x')+Qo(x')+Q] dx' +Qf(x) (49)
v._ p JJ.

where y.- p is the unknown to be determined along with function Q(x).
Referring back to (25), which is a particular form of (25') in the case under consideration,

from (36) we obtain:

Qn+t(x) = f." Z(X'X')(~-~J)[Qn(X')+Qo(X')+Q]dX'+Qf(X) (50)
V p • JJ.

where starting from the situation Qt(x) == 0 we let V; stand for the region in which Qn(x')
comply with (34b).

Having substituted in (50) the expression of the influence function z(x, x') of a positive
unit dislocation q(x') . dx' at x' on the bending moment at x, i.e.

( ') 3EJ,
Z x,x = -rxx, (51)

(52)

(53)

it may be noted that at each stage of iteration the integral in the second member of (50)
supplies a contribution of the type anplx/8 correcting Qf(x). Assuming

bnan = 1-~
yQ

the expression of the incremental response Qn+ t (x) for substitution in the right hand side
of (50) for the continuation of the cycle takes the form

(
bn )PfX px

2

Qn+ t(x) = 4- yQ 8-2

where, in virtue of (42) coefficients bn take on the meaning of nth approximation values
of the incremental moment at the clamped end Q(I). Given the reasoning in the previous
section, we can begin the iterations with the origin function ¢t(x) == O. From (50) and for
the numeric values previously assumed for ratios EJlji and pip we find that at = 0 and so

(54)
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which corresponds to the elastic solution, as may be observed by placing (54) in (53) and
deducing for n= 1 the expression:

(55)

Substituting (55) in (50) and proceeding with the iteration, we obtain the following values
for bn :

b2 = 0-0196469(2

b3 = 0·0196591(2

b4 = 0·0196587(2

(56)

whose convergence on the numeric value (45) previously evaluated by the analogic method
may be regarded as sufficiently rapid.

6. EXTENSIONS

When we come to consider incremental constitutive laws of the associated type with
work-softening, we must always make inter alia one or more assumptions that limit or
condition the work-hardening coefficient J.l(x). This is because the assumption regarding
the sign of the coefficient (J.l(x) < 0) alone is not sufficient to ensure uniqueness of solution
of the incremental problem, as is quickly evident in particular cases or, more generally,
from the discussion of equation (16).

To be able to extend the chain of reasoning so far expounded to the case of work
softening we must therefore make an additional assumption. For this purpose we may
require that J.l(x) should comply with the inequality:

i J.l(x) ..p(x) d V - Ii Z(x, x'). ,t(x). A(X') d V d v' > 0
V p V p

(57)

for any A(X) ~ 0, a condition that in [4] was found to be sufficient both for uniqueness of
the solution and for the general stability of the system.

Represent the condition of plasticity in the space of components qj(x) with regular
surface 'P(q;) = 0 and define function g[,t(x')] in the following way:

{
if ,t(x') > 0

for 'P[qiO(X')] ~ 0 ; -
if A(X') < 0

if A(X') < 0 or A(X') > 0

and 'P[qiO(X')+lj;(X')] < 0

for 'P[qiO(X')] < 0

g[A(X')] = A(X') +h(x')

g[A(X')] = 0

g[A(x')] = 0

(58)

(59)

(60)

ifA(x') ~ 0 g[A(x')] = ,t(x') + ![qjo]+h(x') (61)

and 'P(qjO(X') +qj(x')] > 0
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where ![qiO] is known like f[QiO] in (11) (Fig. 2). Now as Jl(x) < 0, equation (16) is trans
formed into the analogous expression

A(X)- Iv Z~~~'). g[A(X')] dV' = 0 (62)

for which the previous reasoning regarding the applicability and convergence of the
iterative method (25') still hold good. Further, because of the additional hypothesis (57),
the sufficient conditions for convergence of the simple iteration method, are now satisfied.

Indeed, given u(x) = A(X)J[Jl(x)], (57) is transformed in to the condition

Lp u
2
(x) dV - IIv p J[Jl(~j~'~L(X/)]U(X) . u(x') dV d v' > 0 (63)

hence, on the condition for function u(x):

(64)

and for known extremum properties of the eigenvalues, we obtain (r 1 denoting the eigen
value of least modulus):

and hence

1 IIf. Z(x, x') . ., , IIr Ii = max v p J[Jl(X)] . J[Jl(X')]U(X) . u(x ) dV dV < 1 (65)

(22)

coincident with the sufficient condition (22) for convergence of the simple iteration method.
Lastly, regarding the possibility of a more general extension including the behavior

of perfectly elastic-plastic materials (Jl(x) = 0), we would point out that a singularity
arises in (16) that gives rise to a number of difficulties. There are some useful pointers in
the theory of singular integral equations [14] to which the reader is referred for a fuller
study of the subject.

REFERENCES

[I] G. CERADlNI, A maximum principle for the analysis of elastic-plastic systems. Meccanica No. 3/4 (1966).
[2] G. CERADINI, SuI calcolo delle strutture elastoplastiche, Nota 1° e W. Costruz. metall. No.3, 5 (1965).
[3] G. MAIER, Behavior of elastic-plastic trusses with unstable bars. J. Engng Mech. Div. Am. Soc. civ. Engrs

(June 1966).
[4] G. MAIER. On elastic-plastic structures with associated stress-strain relations allowing for work-softening.

Meccanica II No. I (1967).
[5] G. MAIER, Extremum theorems for the analysis of elastic plastic structures containing work-softening

elements. Meccanica No. I (1968).
[6] O. DE DONATO, Sufficient uniqueness and stability conditions for elastic-plastic structures with associated

flow-laws. Meccanica No.4 (1967).
[7] G. SACCHI, Un criterio analogico per 10 studio di strutture elastoplastiche. Cemento armato No.9-58 (196\).
[8] F. G. TRICOMl, Integral Equations. Intern. Publ. (1957).
[9] L. COLLATZ, The Numerical Treatment of Differential Equations. Springer (1960).

[10] L. FINZI, Scarichi e ritorni elastici locali in eiastoplasticita piana. Symp. sulla Plasticita nella Scienza delle
Costruzioni, Varenna 1956.



Iterative solution of the incremental problem for elastic-plastic structures 95

[II] L. FINZI, Sulla evoluzione delle frontiere nei problemi e1astoplastici tridimensionali. Rc. 1st. lomb. Sci.
Lett. 90 (1956).

[12] B. NOBLE, The numerical solution of non linear integral equations. Proc. Seminar University of Wisconsin,
Madison, 22-24 April, 1963.

[13] G. GRANDORI, Sui calcolo delle reazioni sovrabbondanti di travi inflesse elastoplastiche. Rc. 1st lomb. Sci.
Lett. 86 (1953).

[14] N. J. MUSKHELISHVILI, Singular Integral Equations. Groningen (1953).
[15] P. VILLAGGIO, Stabilita rispetto al convesso dei domini plastici delle travature. To appear.

(Received 8 January 1968)

A6cTpaKT-npeo6pa3blBaeTclI KJlaCCH'leCKHH no):\xo):\ nOCTeneHHO HapaCTaIOIUeH 3a):\a'lH ynpyro-nJlacT
H'leCKHX KOHCTPYKl.\HH, c :meMeHTapHO ynpO'lHlIIOIUHMH COCTaBHbIMH :meMeHTaMH, BblpaJKeHHbIH B</> opMe
HHTCrpaJlbHOrO ypaBHcHHlI, B KaKoe JlH60 HOBoe, cB060):\Hoe OT YCJlOBHH, ):\JllI HeH3BeCTHOH nOCTeneHHO
HapacTalOIUeH nJlaCTH'lCCKOH ):\e</>opMal.\HH.

Pa60Ta HcnoJlb3yeT HeKOTopblC HTepal.\HOHHble MeTO):\bl TeopHH HHTerpaJlbHblX ypaBHcHHH H 06cyJK):\aeT
YCJlOBHlI O):\HOMCpHOH CXO):\HMOCTH nOCJlC):\OBaTCJlbHbIX </>YHKl.\HH, KOTopble npH6J1HJKaIOT K nOCTeneHHO
HapaCTalOIUcMy pacnpe):\eJleHHIO HanplIJKeHHH.

B 3aKJlIO'leHHC, nOKa3aHO, 'ITO paCCMaTpHBaeMble HHTerpaJlbHblC MCTO):\bl MOJKHO HCnOJlb30BaTb
):\JllI CJlY'lalI KOHCTPYKl.\HH C CMar'laIOIUHMHClI COCTaBHblMH 3J1eMeHTaMH. YCJlOBHe, KOTopoe 06bIH0
conycTByclI HCCJlC):\OBaHHIO 3THX CHCTCM, COBMCCTHoe C YCJlOBHCM CXO):\HMOCTH O):\Horo H3 06CYJK):\aeMbIX
l1Tcpal.\HOHHbIX MCTO):\OB.


